On Dilation Operators in Besov Spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On dilation operators in Besov spaces

We consider dilation operators Tk : f → f(2·) in the framework of Besov spaces B p,q(R ) when 0 < p ≤ 1. If s > n ` 1 p − 1 ́ , Tk is a bounded linear operator from B p,q(R ) into itself and there are optimal bounds for its norm. We study the situation on the line s = n `

متن کامل

On dilation operators in Triebel-Lizorkin spaces

We consider dilation operators Tk : f → f(2 k ·) in the framework of Triebel-Lizorkin spaces F s p,q(R ). If s > n max ` 1 p − 1, 0 ́ , Tk is a bounded linear operator from F s p,q(R ) into itself and there are optimal bounds for its norm. We study the situation on the line s = n max ` 1 p − 1, 0 ́ , an open problem mentioned in [ET96, 2.3.1]. It turns out that the results shed new light upon the...

متن کامل

Approximation by quasi-projection operators in Besov spaces

In this paper, we investigate approximation of quasi-projection operators in Besov spaces B p,q, μ > 0, 1 ≤ p, q ≤ ∞. Suppose I is a countable index set. Let (φi)i∈I be a family of functions in Lp(IR), and let (φ̃i)i∈I be a family of functions in Lp̃(IR), where 1/p+ 1/p̃ = 1. Let Q be the quasi-projection operator given by

متن کامل

Trace operators in Besov and Triebel-Lizorkin spaces

We determine the trace of Besov spaces Bsp,q(R ) and Triebel-Lizorkin spaces Fsp,q(R ) – characterized via atomic decompositions – on hyperplanes R, n > m ∈ N, for parameters 0 < p, q < ∞ and s > 1 p . The limiting case s = 1 p is investigated as well. We generalize these assertions to traces on the boundary Γ = ∂Ω of bounded C domains Ω. Our results remain valid considering the classical space...

متن کامل

Spectrum of Convolution Dilation Operators on Weighted L Spaces

R c(x)dx = 1. For any sufficiently large number K the space Lp([−K,K]) of all Lp-functions with support in the interval [−K,K] is an invariant space of Wc,α. It is known that Wc,α restricted to Lp([−K,K]) is a compact operator with eigenvalues α−k, k = 0, 1, . . . , and spectrum {α−k : k = 1, 2, . . .} ∪ {0}, which are independent of c and K. This result is better understood in the context of w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matemática Complutense

سال: 2009

ISSN: 1988-2807,1139-1138

DOI: 10.5209/rev_rema.2009.v22.n1.16324